Ⅰ.考試要求
命題是在符合聽障生的實際學(xué)習(xí)能力前提下,進一步體現(xiàn)國家教育部2003年制定的《數(shù)學(xué)課程標(biāo)準(zhǔn)》的評價理念,引導(dǎo)高中數(shù)學(xué)教學(xué),改善聽障生的數(shù)學(xué)學(xué)習(xí)方式,有效地評價學(xué)生的數(shù)學(xué)學(xué)習(xí)狀況。
數(shù)學(xué)科的考試,重點考察中學(xué)數(shù)學(xué)基礎(chǔ)知識、基本技能、基本思想和方法,邏輯思維能力、運算能力、空間想象能力、分析和解決問題的能力以及聽障生進入高校繼續(xù)學(xué)習(xí)的潛能?!“凑?ldquo;考查基礎(chǔ)知識的同時,注重考查能力”的原則,確立以聽障生實際能力立意命題的指導(dǎo)思想,將知識、能力與素質(zhì)的考查融為一體,全面檢測考生的數(shù)學(xué)素養(yǎng)。
一、考試內(nèi)容的知識要求、能力要求和個性品質(zhì)要求
1. 知識要求
知識是指《數(shù)學(xué)課程標(biāo)準(zhǔn)》所規(guī)定的部分教學(xué)內(nèi)容中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及其中的數(shù)學(xué)思想和方法。
對知識的要求,依次為了解、理解和掌握、綜合運用三個層次。
(1)了解:要求對所列知識的含義及其背景有初步的、感性的認識,知道這一知識內(nèi)容是什么,并能(或會)在有關(guān)的問題中識別它。
(2)理解和掌握:要求對所列知識內(nèi)容有較深刻的理論認識,能夠解釋、舉例或變形、推斷,并能利用知識解決有關(guān)問題。
(3)綜合運用:要求系統(tǒng)地掌握知識的內(nèi)在聯(lián)系,能運用所列知識分析和解決較為復(fù)雜的或綜合性的問題。
2. 能力要求
能力是指思維能力、運算能力、空間想象能力以及實踐能力和創(chuàng)新意識。
(1)思維能力:會對問題或資料進行戲察、比較、分析、綜合、抽象與概括;會用類比、歸納和演繹進行推理;能合乎邏輯地、準(zhǔn)確地進行表述。
(2)運算能力:會根據(jù)法則、公式進行正確運算、變形和數(shù)據(jù)處理;能根據(jù)問題的條件和目標(biāo),尋找與設(shè)計合理、簡捷的運算途徑;能根據(jù)要求對數(shù)據(jù)進行估計和近似計算。
運算能力是思維能力和運算技能的結(jié)合。運算包括對數(shù)字的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等。運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調(diào)整運算的能力以及實施運算和計算的技能。
(3)空間想象能力:跟據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對圖形進行分解、組合與變換;會運用圖形與圖表等手段形象地揭示問題的本質(zhì)。
空間想象能力是對空間形式的觀察、分析、抽象的能力。主要表現(xiàn)為識圖、畫圖和對圖形的想象能力。識圖是指觀察、研究所給圖形中幾何元素之間的相互關(guān)系;畫圖是指將文字語言和符號語言轉(zhuǎn)化為圖形語言,以及對圖形添加輔助圖形或?qū)D形進行各種變換;對圖形的想象主要包括有圖想圖和無圖想圖兩種,是空間想象能力高層次的標(biāo)志。
(4)創(chuàng)新意識:對新穎的信息、情境和設(shè)問,選擇有效的方法和手段分析信息,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識、思想和方法,進行獨立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題。
創(chuàng)新意識是理性思維的高層次表現(xiàn)。對數(shù)學(xué)問題的“觀察、猜測、抽象、概括、證明”,是發(fā)現(xiàn)問題和解決問題的重要途徑,對數(shù)學(xué)知識的遷移、組合、融會的程度越高,顯示出的創(chuàng)新意識也就越強。
3. 個性品質(zhì)要求
個性品質(zhì)是指考生個體的情感、態(tài)度和價值觀。要求考生具有一定的數(shù)學(xué)視野,認識數(shù)學(xué)的科學(xué)價值和人文價值,崇尚數(shù)學(xué)的理性精神,形成審慎思維的習(xí)慣,體會數(shù)學(xué)的美學(xué)意義。
要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時間,以實事求是的科學(xué)態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神。
二、考查要求
數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識在各自的發(fā)展過程中的縱向聯(lián)系和各部分知識之間的橫向聯(lián)系。要善于從本質(zhì)上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的結(jié)構(gòu)框架。
1.對數(shù)學(xué)基礎(chǔ)知識的考查,要既全面又突出重點,對于支撐學(xué)科知識體系的重點內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體。
2.對數(shù)學(xué)思想和方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學(xué)知識相結(jié)合,通過數(shù)學(xué)知識的考查,反映考生對數(shù)學(xué)思想和方法的理解;要從學(xué)科整體意義和思想價值立意,注重通性通法,淡化特殊技巧,有效地檢測考生對中學(xué)數(shù)學(xué)知識中所蘊涵的數(shù)學(xué)思想和方法的掌握程度。
3.對數(shù)學(xué)能力的考查,強調(diào)“以聾生實際能力立意”,就是以數(shù)學(xué)知識為載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點組織材料。側(cè)重體現(xiàn)對知識的理解和應(yīng)用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度以及進一步學(xué)習(xí)的潛能。
4.對實踐能力的考查主要采用解決應(yīng)用問題的形式。命題時一要堅持“貼近生活,背景公平,控制難度”的原則,試題設(shè)計要切合我國聾人中學(xué)數(shù)學(xué)教學(xué)的實際,考慮聽障生的年齡特點和實踐經(jīng)驗,使數(shù)學(xué)應(yīng)用問題的難度符合考生的水平。
數(shù)學(xué)科的命題,在考查基礎(chǔ)知識的基礎(chǔ)上,注重對數(shù)學(xué)思想和方法的考查,注重對數(shù)學(xué)能力的考查,注重展現(xiàn)數(shù)學(xué)的科學(xué)價值和人文價值,同時兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實性,重視試題間的層次性,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求。
Ⅱ.考試內(nèi)容
1. 集合、簡易邏輯
考試內(nèi)容:
集合。子集。補集。交集。并集。邏輯聯(lián)結(jié)詞。四種命題。充分條件和必要條件。
考試要求:
(1)理解集合、子集、補集、交集、并集的概念。了解空集和全集的意義。了解屬于、包含、相等關(guān)系的意義。掌握有關(guān)的術(shù)語和符號,并會用它們正確表示一些簡單的集合。
(2)理解邏輯聯(lián)結(jié)詞或、且、非的含義。理解四種命題及其相互關(guān)系。理解充分條件、必要條件及充要條件的意義。
2. 函數(shù)
考試內(nèi)容:
映射。函數(shù)。函數(shù)的單調(diào)性。奇偶性。反函數(shù)?;榉春瘮?shù)的函數(shù)圖像間的關(guān)系。指數(shù)概念的擴充。有理指數(shù)冪的運算性質(zhì)。指數(shù)函數(shù)。對數(shù)。對數(shù)的運算性質(zhì)。對數(shù)函數(shù)。函數(shù)的應(yīng)用。
考試要求:
(1)了解映射的概念,理解函數(shù)的概念。
(2)了解函數(shù)單調(diào)性、奇偶性的概念。
(3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會求一些簡單函數(shù)的反函數(shù)。
(4)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì)。
(5)理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì)。掌握對數(shù)函數(shù)的概念、圖像和性質(zhì)。
3. 不等式
考試內(nèi)容:
不等式。不等式的基本性質(zhì)。不等式的證明。不等式的解法。含絕對值的不等式。
考試要求:
(1)理解不等式的性質(zhì)。
(2)理解分析法、綜合法、比較法證明簡單的不等式。
(3)掌握簡單不等式的解法。
4. 三角函數(shù)
考試內(nèi)容:
角的概念的推廣、弧度制。任意角的三角函數(shù),單位圓中的三角函數(shù)線,同角三角函數(shù)的基本關(guān)系式,正弦、余弦的誘導(dǎo)公式。兩角和與差的正弦、余弦、正切,二倍角的正弦、余弦、正切。正弦函數(shù)、余弦函數(shù)的圖像和性質(zhì)。周期函數(shù)。函數(shù)y=Asin(ωx+ )的圖像。正切函數(shù)的圖像和性質(zhì)。已知三角函數(shù)求角。正弦定理。余弦定理。斜三角形解法。
考試要求:
(1)理解任意角的概念、弧度的意義。能正確地進行弧度與角度的換算。
(2)理解任意角的正弦、余弦、正切的定義。了解余切、正割、余割的定義,掌握同角三角函數(shù)的基本關(guān)系式。掌握正弦、余弦的誘導(dǎo)公式。了解周期函數(shù)與最小正周期的意義。
(3)掌握兩角和與兩角差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式。
(4)能正確運用三角公式,進行簡單三角函數(shù)式的化簡、求值和恒等式證明。
(5)理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像和性質(zhì),會用五點法畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(
x+
)的簡圖,了解A、
、
的物理意義。
(6)掌握正弦定理、余弦定理,并能初步運用它們解斜三角形。
5. 數(shù)列
考試內(nèi)容:
數(shù)列。等差數(shù)列及其通項公式。等差數(shù)列前n項和公式。等比數(shù)列及其通項公式。等比數(shù)列前n項和公式。
考試要求:
(1)理解數(shù)列的概念,了解數(shù)列通項公式的意義。了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
(2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題。
(3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題。
6. 直線和圓的方程 (藝術(shù)類考生不考)
考試內(nèi)容:
直線的傾斜角和斜率。直線方程的點斜式和兩點式。直線方程的一般式。 兩條直線平行與垂直的條件。兩條直線的交角。點到直線的距離。用二元一次不等式表示平面區(qū)域。簡單的線性規(guī)劃問題。曲線與方程的概念。由已知條件列出曲線方程。圓的標(biāo)準(zhǔn)方程和一般方程。圓的參數(shù)方程。
考試要求:
(1)理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式。掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程。
(2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式。能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系。
(3)掌握圓的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念,了解圓的參數(shù)方程。
7. 圓錐曲線方程 (藝術(shù)類考生不考)
考試內(nèi)容:
橢圓及其標(biāo)準(zhǔn)方程。橢圓的簡單幾何性質(zhì)。橢圓的參數(shù)方程。雙曲線及其標(biāo)準(zhǔn)方程。雙曲線的簡單幾何性質(zhì)。拋物線及其標(biāo)準(zhǔn)方程。拋物線的簡單幾何性質(zhì)。
考試要求:
(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),了解橢圓的參數(shù)方程。
(2)掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡單幾何性質(zhì)。
(3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡單幾何性質(zhì)。
(4)了解圓錐曲線的初步應(yīng)用。
8. 立體幾何基礎(chǔ)(藝術(shù)類考生不考)(選學(xué),約占考試內(nèi)容的2%)
考試內(nèi)容:
平面及其基本性質(zhì)。平面圖形直觀圖的畫法。平行直線。對應(yīng)邊分別平行的角。異面直線所成的角。異面直線的公垂線。異面直線的距離。直線和平面平行的判定與性質(zhì)。直線和平面垂直的判定與性質(zhì)。點到平面的距離。斜線在平面上的射影。直線和平面所成的角。三垂線定理及其逆定理。平行平面的判定與性質(zhì)。平行平面間的距離。二面角及其平面角。兩個平面垂直的判定與性質(zhì)。多面體。正多面體。棱柱。棱錐。球。
考試要求:
(1)理解平面的基本性質(zhì),會用斜二測的畫法畫水平放置的平面圖形的直觀圖。
(2)理解兩條直線平行與垂直的判定定理和性質(zhì)定理。理解兩條直線所成的角和距離的概念,對于異面直線的距離,只要求會計算已給出公垂線時的距離。
(3)理解直線和平面平行的判定定理和性質(zhì)定理。理解直線和平面垂直的判定定理和性質(zhì)定理。理解斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念。理解三垂線定理及其逆定理。
(4)理解兩個平面平行的判定定理和性質(zhì)定理。理解二面角、二面角的平面角、兩個平行平面間的距離的概念。理解兩個平面垂直的判定定理和性質(zhì)定理。
(5)了解多面體、凸多面體的概念,了解正多面體的概念。
(6)了解棱柱的概念,理解棱柱的性質(zhì),會畫直棱柱的直觀圖。
(7)了解棱錐的概念,理解正棱錐的性質(zhì),會畫正棱錐的直觀圖。
(8)了解球的概念,理解球的性質(zhì),理解球的表面積公式、體積公式。
9. 排列、組合、二項式定理 (藝術(shù)類考生不考)
考試內(nèi)容:
分類計數(shù)原理與分步計數(shù)原理。排列。排列數(shù)公式。組合。組合數(shù)公式。組合數(shù)的兩個性質(zhì)。二項式定理。二項展開式的性質(zhì)。
考試要求:
(1)理解分類計數(shù)原理與分步計數(shù)原理。
(2)了解排列的意義,理解排列數(shù)計算公式。
(3)了解組合的意義,理解組合數(shù)計算公式和組合數(shù)的性質(zhì)。
(4)理解二項式定理和二項展開式的性質(zhì)。