2012西安電子科技大學(xué)數(shù)學(xué)分析考研大綱
來源:西安電子科技大學(xué)網(wǎng) 閱讀:809 次 日期:2013-09-11 17:18:19
溫馨提示:易賢網(wǎng)小編為您整理了“2012西安電子科技大學(xué)數(shù)學(xué)分析考研大綱”,方便廣大網(wǎng)友查閱!

一、考試總體要求與考試要點

1.考試對象

考試對象為具有全國碩士研究生入學(xué)考試資格并報考西安電子科技大學(xué)理學(xué)院數(shù)學(xué)科學(xué)系碩士研究生的考生。

2.考試總體要求

測試考生對數(shù)學(xué)分析的基本內(nèi)容的理解、掌握和熟練程度。要求考生熟悉數(shù)學(xué)分析的基本理論、掌握數(shù)學(xué)分析的基本方法,具有較強的抽象思維能力、邏輯推理能力和運算能力。

3.考試內(nèi)容和要點

(一) 實數(shù)集與函數(shù)

1、實數(shù):實數(shù)的概念;實數(shù)的性質(zhì);絕對值不等式。

2、函數(shù):函數(shù)的概念;函數(shù)的定義域和值域;復(fù)合函數(shù);反函數(shù)。

3、函數(shù)的幾何特性:單調(diào)性;奇偶性;周期性。

要求:理解和掌握絕對值不等式的性質(zhì),會求解絕對值不等式;掌握函數(shù)的概念和表示方法,會求函數(shù)的定義域和值域,會證明具體函數(shù)的幾何特性。

(二) 數(shù)列極限

1、數(shù)列極限的概念( 定義)。

2、數(shù)列極限的性質(zhì):唯一性;有界性;保號性。

3、數(shù)列極限存在的條件:單調(diào)有界準則;兩邊夾法則。

要求:理解和掌握數(shù)列極限的概念,會使用 語言證明數(shù)列的極限;掌握數(shù)列極限的基本性質(zhì)、運算法則以及數(shù)列極限的存在條件(單調(diào)有界原理和兩邊夾法則),并能運用它們求數(shù)列極限;了解無窮小量和無窮大量的概念性質(zhì)和運算法則,會比較無窮小量與無窮大量的階。

(三) 函數(shù)極限

1、函數(shù)極限的概念( 定義、 定義);單側(cè)極限的概念。

2、函數(shù)極限的性質(zhì):唯一性;局部有界性;局部保號性。

3、函數(shù)極限與數(shù)列極限的聯(lián)系。

4、兩個重要極限。

要求:理解和掌握函數(shù)極限的概念,會使用 語言以及 語言證明函數(shù)的極限;掌握函數(shù)極限的基本性質(zhì)、運算法則,會使用海涅歸結(jié)原理證明函數(shù)極限不存在;掌握兩個重要極限并能利用它們來求極限;了解單側(cè)極限的概念以及求法。

(四) 函數(shù)連續(xù)

1、函數(shù)連續(xù)的概念:一點連續(xù)的定義;區(qū)間連續(xù)的定義;單側(cè)連續(xù)的定義;間斷點的分類。

2、連續(xù)函數(shù)的性質(zhì):局部性質(zhì)及運算;閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最值性、有界性、介值性、一致連續(xù)性);復(fù)合函數(shù)的連續(xù)性;反函數(shù)的連續(xù)性。

3、初等函數(shù)的連續(xù)性。

要求:理解與掌握函數(shù)連續(xù)性、一致連續(xù)性的定義以及它們的區(qū)別和聯(lián)系,會證明具體函數(shù)的連續(xù)以及一致連續(xù)性;理解與掌握函數(shù)間斷點的分類;能正確敘述并簡單應(yīng)用閉區(qū)間上連續(xù)函數(shù)的性質(zhì);了解反函數(shù)、復(fù)合函數(shù)以及初等函數(shù)的連續(xù)性。

(五) 實數(shù)系六大基本定理及應(yīng)用

1、實數(shù)系六大基本定理:確界存在定理;單調(diào)有界定理;閉區(qū)間套定理;致密性定理;柯西收斂準則;有限覆蓋定理。

2、閉區(qū)間上連續(xù)函數(shù)性質(zhì)的證明:有界性定理的證明;最值性定理的證明;介值性定理的證明;一致連續(xù)性定理的證明。

要求:理解和掌握上、下確界的定義,會求具體數(shù)集的上、下確界;理解和掌握閉區(qū)間上連續(xù)函數(shù)性質(zhì)及其證明;能正確敘述實數(shù)系六大基本定理的內(nèi)容及其證明思想,會使用開覆蓋以及二分法構(gòu)造區(qū)間套進行簡單證明。

(六) 導(dǎo)數(shù)與微分

1、導(dǎo)數(shù)概念:導(dǎo)數(shù)的定義;單側(cè)導(dǎo)數(shù);導(dǎo)數(shù)的幾何意義。

2、求導(dǎo)法則:初等函數(shù)的求導(dǎo);反函數(shù)的求導(dǎo);復(fù)合函數(shù)的求導(dǎo);隱函數(shù)的求導(dǎo);參數(shù)方程的求導(dǎo);導(dǎo)數(shù)的運算(四則運算)。

3、微分:微分的定義;微分的運算法則;微分的應(yīng)用。

4、高階導(dǎo)數(shù)與高階微分。

要求:能熟練地運用導(dǎo)數(shù)的運算性質(zhì)和求導(dǎo)法則求具體函數(shù)的(高階)導(dǎo)數(shù)和微分;理解和掌握可導(dǎo)與可微、可導(dǎo)與連續(xù)的概念及其相互關(guān)系;掌握左、右導(dǎo)數(shù)的概念以及分段函數(shù)求導(dǎo)方法,了解導(dǎo)函數(shù)的介值定理。

(七) 微分學(xué)基本定理

1、中值定理:羅爾中值定理;拉格朗日中值定理;柯西中值定理。

2、泰勒公式。

要求:理解和掌握中值定理的內(nèi)容、證明及其應(yīng)用;了解泰勒公式及在近似計算中的應(yīng)用,能夠把某些函數(shù)按泰勒公式展開

(八) 導(dǎo)數(shù)的應(yīng)用

1、函數(shù)的單調(diào)性與極值。

2、函數(shù)凹凸性與拐點。

3、幾種特殊類型的未定式極限與洛必達法則。

要求:理解和掌握函數(shù)的單調(diào)性和凹凸性,會使用這些性質(zhì)求函數(shù)的極值點以及拐點;能根據(jù)函數(shù)的單調(diào)性、凹凸性、拐點、漸近線等進行作圖;能熟練地運用洛必達法則求未定式的極限。

(九) 不定積分

1、不定積分概念。

2、換元積分法與分部積分法。

3、有理函數(shù)的積分。

要求:理解和掌握原函數(shù)和不定積分概念以及它們的關(guān)系;熟記不定積分基本公式,掌握換元積分法、分部積分法,會求初等函數(shù)、有理函數(shù)、三角函數(shù)的不定積分。

(十) 定積分

1、定積分的概念;定積分的幾何意義。

2、定積分存在的條件:可積的必要條件和充要條件;達布上和與達布下和;可積函數(shù)類(連續(xù)函數(shù),只有有限個間斷點的有界函數(shù),單調(diào)函數(shù))。

3、定積分的性質(zhì):四則運算;絕對值性質(zhì);區(qū)間可加性;不等式性質(zhì);積分中值定理。

4、定積分的計算:變上限積分函數(shù);牛頓-萊布尼茲公式;換元公式;分部積分公式。

要求:理解和掌握定積分概念、可積的條件以及可積函數(shù)類;熟練掌握和運用牛頓-萊布尼茲公式,換元積分法,分部積分法求定積分。

(十一) 定積分的應(yīng)用

1、定積分的幾何應(yīng)用:微元法;求平面圖形的面積;求平面曲線的弧長;求已知截面面積的立體或者旋轉(zhuǎn)體的體積;求旋轉(zhuǎn)曲面的面積。

2、定積分的物理應(yīng)用:求質(zhì)心;求功;求液體壓力。

要求:理解和掌握"微元法";掌握定積分的幾何應(yīng)用;了解定積分的物理應(yīng)用。

(十二) 數(shù)項級數(shù)

1、預(yù)備知識:上、下極限;無窮級數(shù)收斂、發(fā)散的概念;收斂級數(shù)的基本性質(zhì);柯西收斂原理。

2、正項級數(shù):比較判別法;達朗貝爾判別法;柯西判別法;積分判別法。

3、任意項級數(shù):絕對收斂與條件收斂的概念及其性質(zhì);交錯級數(shù)與萊布尼茲判別法;阿貝爾判別法與狄利克雷判別法。

要求:理解和掌握正項級數(shù)的收斂判別法以及交錯級數(shù)的萊布尼茲判別法;掌握一般項級數(shù)的阿貝爾判別法與狄利克雷判別法;了解上、下極限的概念和性質(zhì)以及絕對收斂和條件收斂的概念和性質(zhì)。

(十三) 反常積分

1、無窮限的反常積分:無窮限的反常積分的概念;無窮限的反常積分的斂散性判別法。

2、無界函數(shù)的反常積分:無界函數(shù)的反常積分的概念;無界函數(shù)的反常積分的斂散性判別法。

要求:理解和掌握反常積分的收斂、發(fā)散、絕對收斂、條件收斂的概念;掌握反常積分的柯西收斂準則,會判斷某些反常積分的斂散性。

(十四) 函數(shù)項級數(shù)

1、一致收斂的概念。

2、一致收斂的性質(zhì):連續(xù)性定理;可積性定理;可導(dǎo)性定理。

3、一致收斂的判別法;M-判別法;阿貝爾判別法;狄利克雷判別法。

要求:理解和掌握一致收斂的概念、性質(zhì)及其證明;能夠熟練地運用M-判別法判斷一些函數(shù)項級數(shù)的一致收斂性。

(十五) 冪級數(shù)

1、冪級數(shù)的概念以及冪級數(shù)的收斂半徑、收斂區(qū)間、收斂域。

2、冪級數(shù)的性質(zhì)。

3、函數(shù)展開成冪級數(shù)。

要求:理解和掌握冪級數(shù)的概念,會求冪級數(shù)的和函數(shù)以及它的收斂半徑、收斂區(qū)間、收斂域;掌握冪級數(shù)的性質(zhì)以及兩種將函數(shù)展開成冪級數(shù)的方法,會把一些函數(shù)直接或者間接展開成冪級數(shù)。

(十六) 傅里葉級數(shù)

  1、傅里葉級數(shù):三角函數(shù)系的正交性;傅里葉系數(shù)。

2、以 為周期的函數(shù)的傅里葉級數(shù)。

3、以2L為周期的傅里葉級數(shù)。

4、收斂定理的證明。

5、傅里葉變換。

要求:理解和掌握三角函數(shù)系的正交性與傅里葉級數(shù)的概念;掌握傅里葉級數(shù)收斂性判別法;能將一些函數(shù)展開成傅里葉級數(shù);了解收斂定理的證明以及傅里葉變換的概念和性質(zhì)。

(十七) 多元函數(shù)極限與連續(xù)

1、平面點集與多元函數(shù)的概念。

2、二元函數(shù)的二重極限、二次極限。

3、二元函數(shù)的連續(xù)性。

要求:理解和掌握二元函數(shù)的二重極限、二次極限的概念以及它們之間的關(guān)系,會計算一些簡單的二元函數(shù)的二重極限和二次極限;掌握平面點集、聚點的概念;了解平面點集的幾個基本定理以及閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì)。

(十八) 多元函數(shù)的微分學(xué)

1、偏導(dǎo)數(shù)與全微分:偏導(dǎo)數(shù)與全微分的概念;可微與可偏導(dǎo)、可微與連續(xù)、可偏導(dǎo)與連續(xù)的關(guān)系。

2、復(fù)合函數(shù)求偏導(dǎo)數(shù)以及隱函數(shù)求偏導(dǎo)數(shù)。

3、空間曲線的切線與法平面以及空間曲面的切平面和法線。

4、方向?qū)?shù)與梯度。

5、多元函數(shù)的泰勒公式。

6、極值和條件極值

要求:理解和掌握偏導(dǎo)數(shù)、全微分、方向?qū)?shù)、梯度的概念及其計算;掌握多元函數(shù)可微、可偏導(dǎo)和連續(xù)之間的關(guān)系;會求空間曲線的切線與法平面以及空間曲面的切平面和法線;會求函數(shù)的極值、最值;了解多元泰勒公式。

(十九) 隱函數(shù)存在定理、函數(shù)相關(guān)

1、隱函數(shù):隱函數(shù)存在定理;反函數(shù)存在定理;雅克比行列式。

2、函數(shù)相關(guān)。

要求:了解隱函數(shù)的概念及隱函數(shù)存在定理,會求隱函數(shù)的導(dǎo)數(shù);了解函數(shù)行列式的性質(zhì)以及函數(shù)相關(guān)。

(二十) 含參變量積分以及反常積分

1、含參變量積分:積分與極限交換次序;積分與求導(dǎo)交換次序;兩個積分號交換次序。

2、含參變量反常積分:含參變量反常積分的一致收斂性;一致收斂的判別法;歐拉積分、 函數(shù)、 函數(shù)。

要求:理解和掌握積分號下求導(dǎo)的方法;掌握 函數(shù)、 函數(shù)的性質(zhì)及其相互關(guān)系;了解含參變量反常積分的一致收斂性以及一致收斂的判別法。

(二十一) 重積分

1、重積分概念:重積分的概念;重積分的性質(zhì)。

2、二重積分的計算:用直角坐標計算二重積分;用極坐標計算二重積分;用一般變換計算二重積分。

3、三重積分計算:用直角坐標計算三重積分;用柱面坐標計算三重積分;用球面坐標計算三重積分。

4、重積分應(yīng)用:求物體的質(zhì)心、轉(zhuǎn)動慣量;求立體體積,曲面的面積;求引力。

 要求:理解和掌握二重、三重積分的各種積分方法和特點,會選擇最合適的方法進行積分;掌握并合理運用重積分的對稱性簡化計算;了解柱面坐標和球面坐標積分元素的推導(dǎo)。

(二十二) 曲線積分與曲面積分

1、第一類曲線積分:第一類曲線積分的概念、性質(zhì)與計算;第一類曲線積分的對稱性。

2、第二類曲線積分:第二類曲線積分的概念、性質(zhì)與計算;兩類曲線積分的聯(lián)系。

3、第一類曲面積分:第一類曲面積分的概念、性質(zhì)與計算;第一類曲面積分的對稱性。

4、第二類曲面積分:曲面的側(cè);第二類曲面積分的概念、性質(zhì)與計算;兩類曲面積分的聯(lián)系。

5、格林公式:曲線積分與路徑的無關(guān)的四種等價敘述。

6、高斯公式。

7、斯托克斯公式。

8、場論初步:梯度;散度;旋度。

要求:理解和掌握兩類曲線積分與曲面積分的概念、性質(zhì)與計算,會使用對稱性簡化第一類曲線以及曲面積分;熟練掌握格林公式、高斯公式的證明并能利用它們求一些曲線積分和曲面積分;了解兩類曲線積分及曲面積分的區(qū)別和聯(lián)系;了解斯托克斯公式和場論初步。

二、考試形式與試卷結(jié)構(gòu)

1. 考試時間

180分鐘。

2.試卷分值

150分。

3.考試方式

閉卷考試。

4.題型結(jié)構(gòu)

類型包括:選擇題、填空題、計算題、證明題、應(yīng)用題。

三、推薦教材參考書目

【1】 歐陽光中等主編 《數(shù)學(xué)分析》(第三版)高等教育出版社

【2】 華東師范大學(xué)數(shù)學(xué)系主編 《數(shù)學(xué)分析》(第三版)高等教育出版社

【3】 陳紀修等主編《數(shù)學(xué)分析》(第二版)高等教育出版社

更多學(xué)歷考試信息請查看學(xué)歷考試網(wǎng)

由于各方面情況的不斷調(diào)整與變化,易賢網(wǎng)提供的所有考試信息和咨詢回復(fù)僅供參考,敬請考生以權(quán)威部門公布的正式信息和咨詢?yōu)闇剩?/div>
關(guān)于我們 | 聯(lián)系我們 | 人才招聘 | 網(wǎng)站聲明 | 網(wǎng)站幫助 | 非正式的簡要咨詢 | 簡要咨詢須知 | 加入群交流 | 手機站點 | 投訴建議
工業(yè)和信息化部備案號:滇ICP備2023014141號-1 云南省教育廳備案號:云教ICP備0901021 滇公網(wǎng)安備53010202001879號 人力資源服務(wù)許可證:(云)人服證字(2023)第0102001523號
聯(lián)系電話:0871-65317125(9:00—18:00) 獲取招聘考試信息及咨詢關(guān)注公眾號:hfpxwx
咨詢QQ:526150442(9:00—18:00)版權(quán)所有:易賢網(wǎng)