西北師范大學(xué)2014年碩士生入學(xué)考試《高等代數(shù)》科目大綱
來(lái)源:西北師范大學(xué)網(wǎng) 閱讀:904 次 日期:2013-09-30 17:02:00
溫馨提示:易賢網(wǎng)小編為您整理了“西北師范大學(xué)2014年碩士生入學(xué)考試《高等代數(shù)》科目大綱”,方便廣大網(wǎng)友查閱!

(科目代碼:812)

一、考核要求

高等代數(shù)是中學(xué)代數(shù)的繼續(xù)和提高,是數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)的一門(mén)重要基礎(chǔ)課,對(duì)數(shù)學(xué)專業(yè)后繼課程的學(xué)習(xí)至關(guān)重要,它的思想和方法已經(jīng)滲透到數(shù)學(xué)的各個(gè)領(lǐng)域。高等代數(shù)的全部?jī)?nèi)容分兩大部分,多項(xiàng)式理論和線性代數(shù)理論。其中線性代數(shù)理論顯得十分重要,不僅在自然科學(xué)的各分支有著重要應(yīng)用,而且在社會(huì)科學(xué)領(lǐng)域中也有著廣泛的應(yīng)用。高等代數(shù)課程的考核,以其基本理論和方法為主,考核學(xué)生對(duì)從特殊到一般,從具體到抽象的思想方法的掌握情況,考核學(xué)生對(duì)基礎(chǔ)知識(shí)的掌握情況,考核學(xué)生是否具有嚴(yán)密的邏輯推理能力,考核學(xué)生應(yīng)用所學(xué)知識(shí)解決某些實(shí)際問(wèn)題的能力。

二、考核評(píng)價(jià)目標(biāo)

高等代數(shù)課程重點(diǎn)考核學(xué)生對(duì)理論基礎(chǔ)知識(shí)掌握的情況及分析解決某些實(shí)際問(wèn)題能力。通過(guò)考核,選拔出具有較好的數(shù)學(xué)功底的學(xué)生來(lái)攻讀數(shù)學(xué)學(xué)科的碩士研究生??己嗽u(píng)價(jià)目標(biāo)應(yīng)使錄取的研究生具有較扎實(shí)與系統(tǒng)的從事數(shù)學(xué)的進(jìn)一步學(xué)習(xí)及科研工作所需的高等代數(shù)知識(shí)。

三、考核內(nèi)容

第一章基本概念

第一節(jié)集合與映射

主要考核單射、滿射、雙射及的概念及可逆映射的基本性質(zhì)。

第二節(jié)數(shù)學(xué)歸納法

主要考核第一數(shù)學(xué)歸納法和第二數(shù)學(xué)歸納法原理。

第三節(jié)整數(shù)的整除性質(zhì)

主要考核帶余除法、素?cái)?shù)、合數(shù)、最大公因數(shù)等概念及性質(zhì)。

第四節(jié)數(shù)環(huán)與數(shù)域

主要考核數(shù)環(huán)、數(shù)域這兩個(gè)基本概念及二者之間的關(guān)系

第二章多項(xiàng)式

第一節(jié)一元多項(xiàng)式的定義及運(yùn)算

考核多項(xiàng)式的加法、減法與乘法運(yùn)算,給出多項(xiàng)式次數(shù)的定義,零次多項(xiàng)式與零多項(xiàng)式。

第二節(jié)多項(xiàng)式的整除性

考核帶余除法定理,它是多項(xiàng)式理論的核心內(nèi)容。

第三節(jié)最大公因式

考核最大公因式的概念、求法,特別是輾轉(zhuǎn)相除法,另外考核多項(xiàng)式互素的概念和判斷互素的充分必要條件。

第四節(jié)多項(xiàng)式的分解

考核多項(xiàng)式因式分解的思想。

第五節(jié)重因式

考核多項(xiàng)式重因式的概念、有無(wú)重因式的充分必要條件。

第六節(jié)多項(xiàng)式函數(shù)多項(xiàng)式的根

考核多項(xiàng)式的函數(shù)的觀點(diǎn)與形式觀點(diǎn)統(tǒng)一的思想。

第七節(jié)復(fù)數(shù)域和實(shí)數(shù)域上的多項(xiàng)式

考核系數(shù)在復(fù)數(shù)域上和系數(shù)在實(shí)數(shù)域上的多項(xiàng)式的特點(diǎn),考核復(fù)系數(shù)多項(xiàng)式只有一次的是不可約的,而實(shí)系數(shù)多項(xiàng)式只有一次的和某些二次的是不可約的。

第八節(jié)有理系數(shù)多項(xiàng)式

考核有理系數(shù)多項(xiàng)式的概念,指出有理系數(shù)多項(xiàng)式在有理數(shù)域上的分解與在整數(shù)集合上的分解是一回事,給出有理系數(shù)多項(xiàng)式根的求法和判別有理根的艾森斯坦因方法。

第三章行列式

第一節(jié)線性方程組與行列式

考核2×2線性方程組與二階行列式的關(guān)系,3×3線性方程組與三階行列式的關(guān)系,n×n線性方程組與n階行列式是什么關(guān)系。

第二節(jié)排列

考核排列概念及基本性質(zhì),其中包括偶排列、奇排列、反序數(shù)、n!個(gè)排列中奇排列、偶排列各占一半。

第三節(jié)n階行列式

考核n階行列式的定義,性質(zhì)。

第四節(jié)子式和代數(shù)余子式

考核按行按列展開(kāi)的計(jì)算方法。

第五節(jié)克拉默規(guī)則

考核克拉默規(guī)則,

第四章線性方程組

第一節(jié)線性方程組的消元解法

考核線性方程組的高斯消元法、線性方程線的同解變形、線性方程組的消元法與它的增廣矩陣行初等變換的一致性。

第二節(jié)矩陣的秩、方程組有解判別定理

考核矩陣的秩、初等變換不改變矩陣的秩、線性方程組有解的充分必要條件是系數(shù)矩陣與增廣矩陣的秩相等。

第三節(jié)線性方程組的公式解

考核n×n線性方程組的系數(shù)行列式為零時(shí),如何用克拉默規(guī)則解該方程組,進(jìn)一步討論一般的n×m(n≠m)線性方程組的公式解法。

第四節(jié)結(jié)式和判別式

考核二元二次方程組的解法。

第五章矩陣

第一節(jié)矩陣的運(yùn)算

考核矩陣的加法、數(shù)與矩陣的乘法、矩陣的乘法。

第二節(jié)可逆矩陣、矩陣乘積的行列式

考核n階矩陣的逆矩陣、n階矩陣的行列式、矩陣乘積的行列式與各自行列式的關(guān)系、n階方陣可逆時(shí)逆矩陣的求法。

第三節(jié)矩陣的分塊

考核矩陣的分塊理論,也就是把矩陣中一部分元素看作一個(gè)塊(或一個(gè)元素)來(lái)處理矩陣的有關(guān)問(wèn)題。

第六章向量空間

第一節(jié)定義及例子

考核向量空間的定義的理解。

第二節(jié)子空間

考核向量空間的子空間、交子空間,和子空間及子空間的判定定理。

第三節(jié)向量的線性相關(guān)性

考核向量的線性組合、線性相關(guān)、線性無(wú)關(guān)、極大線性無(wú)關(guān)組、向量組的等價(jià)、向量組的秩。

第四節(jié)基和維數(shù)

考核向量空間的基、維數(shù)、向量空間的維數(shù)公式、余子空間。

第五節(jié)坐標(biāo)

考核向量由基的表示式、坐標(biāo)、過(guò)渡矩陣、坐標(biāo)變換公式。

第六節(jié)向量空間的同構(gòu)

考核向量空間之間的映射、向量空間的同構(gòu)。

第七節(jié)齊次線性方程組的解空間

考核矩陣的行空間、列空間、行空間的秩與矩陣的秩、齊次線性方程的解空間、基礎(chǔ)解系、解空間的結(jié)構(gòu)。

第七章線性變換

第一節(jié)線性映射

考核兩個(gè)向量空間的線性映射、映射的象與核。

第二節(jié)線性變換的運(yùn)算

考核向量空間到自身的線性變換、線性變換的和變換、數(shù)乘線性變換、線性變換的乘積、線性變換的逆線性變換。

第三節(jié)線性變換的矩陣

考核線性變換在一個(gè)基下的矩陣、矩陣確定的線性變換、線性變換的運(yùn)算與相應(yīng)的矩陣運(yùn)算、同一個(gè)線性變換在不同基下矩陣的關(guān)系。

第四節(jié)不變子空間

考核線性變換下子空間的不變性、象不變子空間、核不變子空間、不變子空間與線性變換的對(duì)角化。

第五節(jié)本征值與本征向量

考核矩陣的特征值、特征向量、線性變換的本征值與本征向量、特征子空間。

第六節(jié)可以對(duì)角化的矩陣

考核一個(gè)線性變換可以對(duì)角化的充分必要條件。

第八章歐氏空間

第一節(jié)向量的內(nèi)積

考核實(shí)數(shù)域上向量空間的內(nèi)積、歐氏空間、向量的長(zhǎng)度、夾角、哥西一許瓦茲不等式。

第二節(jié)正交基

考核向量的正交性、正交向量組、正交基、標(biāo)準(zhǔn)正交基、度量矩陣、施密特正交化方法、正交矩陣。

第三節(jié)正交變換

考核保持向量長(zhǎng)度不變的正交變換、正交矩陣的性質(zhì)、正交變換的四個(gè)等價(jià)條件。

第四節(jié)對(duì)稱變換和對(duì)稱矩陣

考核對(duì)稱變換、對(duì)稱矩陣、對(duì)稱變換的對(duì)角化問(wèn)題、實(shí)對(duì)稱矩陣的特征值問(wèn)題。

第九章二次型

第一節(jié)二次型和對(duì)稱矩陣

考核n元二次多項(xiàng)式總可以用一個(gè)對(duì)稱矩陣來(lái)表示,從而通過(guò)矩陣的乘法轉(zhuǎn)化了二次型的表達(dá)形式,這樣把一個(gè)二次型(既一個(gè)多項(xiàng)式的問(wèn)題)用對(duì)稱矩陣及矩陣的合同變換(成對(duì)的行、列初等變換)來(lái)處理。從而使問(wèn)題簡(jiǎn)單明了。

第二節(jié)復(fù)數(shù)域和實(shí)數(shù)域上的二次型

考核復(fù)系數(shù)二次型與實(shí)系數(shù)二次型的典范形式。

第三節(jié)正定二次型

考核了實(shí)數(shù)域上秩為n的二次型的特征。

第四節(jié)主軸問(wèn)題

考核通過(guò)正交變換化二次型為平方和形式的方法。

[1]張禾瑞,郝鈵新.高等代數(shù).北京:高等教育出版社,2007年第5版.

[2]王萼芳,石生明.高等代數(shù).北京:高等教育出版社,2003年第3版.

[3]劉仲奎,楊永保,程輝,陳祥恩,汪小琳.高等代數(shù).北京:高等教育出版社,2003年.

[4]陳祥恩,程輝,喬虎生,劉仲奎.高等代數(shù)專題選講.北京:中國(guó)科學(xué)技術(shù)出版社,2013年.

更多學(xué)歷考試信息請(qǐng)查看學(xué)歷考試網(wǎng)

由于各方面情況的不斷調(diào)整與變化,易賢網(wǎng)提供的所有考試信息和咨詢回復(fù)僅供參考,敬請(qǐng)考生以權(quán)威部門(mén)公布的正式信息和咨詢?yōu)闇?zhǔn)!
關(guān)于我們 | 聯(lián)系我們 | 人才招聘 | 網(wǎng)站聲明 | 網(wǎng)站幫助 | 非正式的簡(jiǎn)要咨詢 | 簡(jiǎn)要咨詢須知 | 加入群交流 | 手機(jī)站點(diǎn) | 投訴建議
工業(yè)和信息化部備案號(hào):滇ICP備2023014141號(hào)-1 云南省教育廳備案號(hào):云教ICP備0901021 滇公網(wǎng)安備53010202001879號(hào) 人力資源服務(wù)許可證:(云)人服證字(2023)第0102001523號(hào)
云南網(wǎng)警備案專用圖標(biāo)
聯(lián)系電話:0871-65317125(9:00—18:00) 獲取招聘考試信息及咨詢關(guān)注公眾號(hào):hfpxwx
咨詢QQ:526150442(9:00—18:00)版權(quán)所有:易賢網(wǎng)
云南網(wǎng)警報(bào)警專用圖標(biāo)