高考數(shù)學立體幾何解題技巧大放送
來源:易賢網(wǎng) 閱讀:765 次 日期:2017-03-24 16:14:16
溫馨提示:易賢網(wǎng)小編為您整理了“高考數(shù)學立體幾何解題技巧大放送”,方便廣大網(wǎng)友查閱!

1.平行、垂直位置關(guān)系的論證的策略:

(1)由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證題思路。

(2)利用題設(shè)條件的性質(zhì)適當添加輔助線(或面)是解題的常用方法之一。

(3)三垂線定理及其逆定理在高考題中使用的頻率最高,在證明線線垂直時應(yīng)優(yōu)先考慮。

2.空間角的計算方法與技巧:

主要步驟:一作、二證、三算;若用向量,那就是一證、二算。

(1)兩條異面直線所成的角①平移法:②補形法:③向量法:

(2)直線和平面所成的角

①作出直線和平面所成的角,關(guān)鍵是作垂線,找射影轉(zhuǎn)化到同一三角形中計算,或用向量計算。

②用公式計算.

(3)二面角

①平面角的作法:(i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。

②平面角的計算法:

(i)找到平面角,然后在三角形中計算(解三角形)或用向量計算;(ii)射影面積法;(iii)向量夾角公式.

3.空間距離的計算方法與技巧:

(1)求點到直線的距離:經(jīng)常應(yīng)用三垂線定理作出點到直線的垂線,然后在相關(guān)的三角形中求解,也可以借助于面積相等求出點到直線的距離。

(2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長。在不能直接作出公垂線的情況下,可轉(zhuǎn)化為線面距離求解(這種情況高考不做要求)。

(3)求點到平面的距離:一般找出(或作出)過此點與已知平面垂直的平面,利用面面垂直的性質(zhì)過該點作出平面的垂線,進而計算;也可以利用“三棱錐體積法”直接求距離;有時直接利用已知點求距離比較困難時,我們可以把點到平面的距離轉(zhuǎn)化為直線到平面的距離,從而“轉(zhuǎn)移”到另一點上去求“點到平面的距離”。求直線與平面的距離及平面與平面的距離一般均轉(zhuǎn)化為點到平面的距離來求解。

4.熟記一些常用的小結(jié)論,諸如:正四面體的體積公式是;面積射影公式;“立平斜關(guān)系式”;最小角定理。弄清楚棱錐的頂點在底面的射影為底面的內(nèi)心、外心、垂心的條件,這可能是快速解答某些問題的前提。

5.平面圖形的翻折、立體圖形的展開等一類問題,要注意翻折前、展開前后有關(guān)幾何元素的“不變性”與“不變量”。

6.與球有關(guān)的題型,只能應(yīng)用“老方法”,求出球的半徑即可。

7.立體幾何讀題:

(1)弄清楚圖形是什么幾何體,規(guī)則的、不規(guī)則的、組合體等。

(2)弄清楚幾何體結(jié)構(gòu)特征。面面、線面、線線之間有哪些關(guān)系(平行、垂直、相等)。

(3)重點留意有哪些面面垂直、線面垂直,線線平行、線面平行等。

8、解題程序劃分為四個過程:

①弄清問題。也就是明白“求證題”的已知是什么?條件是什么?未知是什么?結(jié)論是什么?也就是我們常說的審題。

②擬定計劃。找出已知與未知的直接或者間接的聯(lián)系。在弄清題意的基礎(chǔ)上,從中捕捉有用的信息,并及時提取記憶網(wǎng)絡(luò)中的有關(guān)信息,再將兩組信息資源作出合乎邏輯的有效組合,從而構(gòu)思出一個成功的計劃。即是我們常說的思考。

③執(zhí)行計劃。以簡明、準確、有序的數(shù)學語言和數(shù)學符號將解題思路表述出來,同時驗證解答的合理性。即我們所說的解答。

④回顧。對所得的結(jié)論進行驗證,對解題方法進行總結(jié)。

更多信息請查看高考
易賢網(wǎng)手機網(wǎng)站地址:高考數(shù)學立體幾何解題技巧大放送
關(guān)于我們 | 聯(lián)系我們 | 人才招聘 | 網(wǎng)站聲明 | 網(wǎng)站幫助 | 非正式的簡要咨詢 | 簡要咨詢須知 | 加入群交流 | 手機站點 | 投訴建議
工業(yè)和信息化部備案號:滇ICP備2023014141號-1 云南省教育廳備案號:云教ICP備0901021 滇公網(wǎng)安備53010202001879號 人力資源服務(wù)許可證:(云)人服證字(2023)第0102001523號
聯(lián)系電話:0871-65317125(9:00—18:00) 獲取招聘考試信息及咨詢關(guān)注公眾號:hfpxwx
咨詢QQ:526150442(9:00—18:00)版權(quán)所有:易賢網(wǎng)