考題中抓題型掌握解題思想
高考主干知識有:函數(shù)與導數(shù)、數(shù)列與不等式、三角函數(shù)與平面向量、解析幾何、立體幾何、概率與統(tǒng)計等,這些內(nèi)容既是高中數(shù)學教學的重要內(nèi)容,又是高考考查的重點,而且??汲P隆?/p>
考前一個月,一定要圍繞上述重點內(nèi)容進行重點復習,并將這些板塊知識有機結(jié)合,形成知識鏈、方法群??记?0天備考的過程中,要打破數(shù)學章節(jié)界限,把握好知識間的縱橫聯(lián)系與融合,形成有序的網(wǎng)絡化知識體系和較強的模式識別能力。
數(shù)學大題總體解題思想:注意“子條件”畫出“關(guān)鍵詞”。比如:解三角形類題。解題指導:仔細審題,畫出關(guān)鍵詞(如銳角三角形等)。
邊角互化規(guī)則:(1)先考慮統(tǒng)一為角;后考慮統(tǒng)一為邊;(2)盡量減少角的個數(shù)。最值及范圍問題:(1)注意應用兩邊之和大于第三邊;(2)統(tǒng)一為角就用三角函數(shù)解題;統(tǒng)一為邊就用不等式解題。面積公式的選擇優(yōu)先考慮用已知角。