浙江農(nóng)林大學(xué)林業(yè)與生物技術(shù)學(xué)院2018年考試大綱(數(shù)學(xué)林)
來源:浙江農(nóng)林大學(xué) 閱讀:819 次 日期:2017-09-19 10:52:24
溫馨提示:易賢網(wǎng)小編為您整理了“浙江農(nóng)林大學(xué)林業(yè)與生物技術(shù)學(xué)院2018年考試大綱(數(shù)學(xué)林)”,方便廣大網(wǎng)友查閱!

數(shù)學(xué)是為浙江農(nóng)林大學(xué)的碩士研究生入學(xué)而設(shè)置的選拔性考試。其目的是有效地測試考生是否具備高等院校各專業(yè)大學(xué)本科階段應(yīng)具備的數(shù)學(xué)知識、能力和素養(yǎng)要求,評價的標(biāo)準(zhǔn)是高等院校優(yōu)秀本科畢業(yè)生所能達(dá)到的及格或及格以上水平,以利于浙江農(nóng)林大學(xué)擇優(yōu)錄取,確保碩士研究生的入學(xué)質(zhì)量。

考試目的

數(shù)學(xué)考試涵蓋微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等公共基礎(chǔ)課程。要求考生比較系統(tǒng)地理解數(shù)學(xué)的基本概念和基本理論,掌握數(shù)學(xué)的基本方法,具備抽象思維能力、邏輯推理能力、運算能力以及綜合運用所學(xué)的知識分析問題和解決問題的能力。

考試形式和試卷結(jié)構(gòu)

1、 試卷滿分及考試時間

試卷滿分為150分,考試時間為180分鐘

2、 答題方式

答題方式為閉卷、筆試

3、 試卷內(nèi)容結(jié)構(gòu)

微積分 約56%

線性代數(shù) 約22%

概率論與數(shù)理統(tǒng)計 約22%

4、試卷題型結(jié)構(gòu)

單項選擇題 8小題,每題4分,共32分

填空題 6小題,每題4分,共24分

解答題(包括證明題)9小題,共94分

參考教材

微積分

[1] 王家軍. 高等數(shù)學(xué) (上), 北京:中國農(nóng)業(yè)出版社,2009.

[2] 王家軍,張香云. 高等數(shù)學(xué)學(xué)習(xí)指導(dǎo)與習(xí)題解析(上), 北京:中國農(nóng)業(yè)出版社,2009.

[3] 王家軍. 高等數(shù)學(xué) (下), 北京:中國農(nóng)業(yè)出版社,2009.

[4] 王家軍,徐光輝. 高等數(shù)學(xué)學(xué)習(xí)指導(dǎo)與習(xí)題解析(下), 北京:中國農(nóng)業(yè)出版社,2009.

線性代數(shù)

[1] 王章雄,李任波. 線性代數(shù), 北京:中國農(nóng)業(yè)出版社, 2009.

[2] 王章雄,李任波. 線性代數(shù)學(xué)習(xí)指導(dǎo), 北京:中國農(nóng)業(yè)出版社,2010.

概率論與數(shù)理統(tǒng)計

[1] 黃龍生等編.概率論與數(shù)理統(tǒng)計,北京:中國人民大學(xué)出版社, 2012年.

[2] 李煒,吳志松.概率論與數(shù)理統(tǒng)計,北京:中國農(nóng)業(yè)出版社,2011.

[3] 李煒,吳志松.概率論與數(shù)理統(tǒng)計學(xué)習(xí)指導(dǎo),北京:中國農(nóng)業(yè)出版社,2011.

考試內(nèi)容

微積分

一、 函數(shù)、極限、連續(xù)

考試內(nèi)容

函數(shù)的概念,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)和分段函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立。

數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無窮小量和無窮大量的概念及其關(guān)系,無窮小量的性質(zhì)及無窮小量的比較,極限的四則運算,兩個重要極限。

函數(shù)連續(xù)的概念,函數(shù)間斷點的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。

考試要求

1. 理解函數(shù)的概念,會建立實際問題的函數(shù)關(guān)系。

2. 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。

3. 理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)的概念。

4. 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。

5. 了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。

6.掌握極限四則運算法則,能熟練利用兩個重要極限求極限的方法。

7. 理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量的概念及其與無窮小量的關(guān)系。

8. 理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會判別函數(shù)間斷點的類型。

10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì)。

二、 一元函數(shù)微分學(xué)

考試內(nèi)容

導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線和法線,導(dǎo)數(shù)和微分的四則運算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)和隱函數(shù)的導(dǎo)數(shù),高階導(dǎo)數(shù),微分中值定理,洛必達(dá)(L’Hospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點及漸近線,函數(shù)的最大值和最小值。

考試要求

1. 理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程。

2. 掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運算法則及復(fù)合函數(shù)的求導(dǎo)法則,會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)的導(dǎo)數(shù)。

3. 了解高階導(dǎo)數(shù)的概念,掌握二階導(dǎo)數(shù)的求法。

4. 了解微分的概念以及導(dǎo)數(shù)與微分之間的關(guān)系,會求函數(shù)的微分。

5. 理解羅爾(Rolle)定理和拉格朗日(Lagrange)中值定理,掌握這兩個定理的簡單應(yīng)用。

6. 會用洛必達(dá)法則求極限。

7. 掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法。

8. 會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點和漸近線(水平、鉛直漸近線)。

三、 一元函數(shù)積分學(xué)

考試內(nèi)容

原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,不定積分的換元積分法與分部積分法。定積分的概念和性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓—萊布尼茨(Newton-Leibniz)公式,定積分的換元積分法與分部積分法,反常(廣義)積分,定積分的幾何應(yīng)用。

考試要求

1. 理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法和分部積分法。

2. 了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導(dǎo)數(shù),掌握牛頓—萊布尼茨公式以及定積分的換元積分法和分部積分法。

3. 會利用定積分計算平面圖形的面積和旋轉(zhuǎn)體的體積。

4. 了解無窮區(qū)間上的反常積分的概念,會計算無窮區(qū)間上的反常積分。

四、 多元函數(shù)微積分學(xué)

考試內(nèi)容

多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,多元函數(shù)偏導(dǎo)數(shù)的概念與計算,多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法,二階偏導(dǎo)數(shù),全微分,多元函數(shù)的極值,二重積分的概念、基本性質(zhì)和計算。

考試要求

1. 了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。

2. 了解二元函數(shù)的極限與連續(xù)的概念。

3. 了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,會求多元隱函數(shù)的偏導(dǎo)數(shù)。

4. 了解多元函數(shù)極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極大(小)值。

5. 了解二重積分的概念與基本性質(zhì),掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo))。

五、 常微分方程

考試內(nèi)容

常微分方程的基本概念,變量可分離的微分方程,一階線性微分方程。

考試要求

1. 了解微分方程及其階、解、通解、初始條件和特解等概念。

2. 掌握變量可分離的微分方程及一階線性微分方程的求解方法。

線性代數(shù)

一、 行列式

考試內(nèi)容

行列式的概念和基本性質(zhì),行列式按行(列)展開定理。

考試要求

1. 了解行列式的概念,掌握行列式的性質(zhì)。

2. 會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式。

二、 矩陣

考試內(nèi)容

矩陣的概念,矩陣的線性運算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價。

考試要求

1. 理解矩陣的概念,了解單位矩陣、對角矩陣、行階梯形矩陣與行最簡形矩陣的定義,了解對稱矩陣、反對稱矩陣的定義。

2. 掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。

3. 理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,了解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。

4. 了解矩陣的初等變換、初等矩陣及矩陣等價的概念,理解矩陣秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。

5. 了解分塊矩陣及其運算。

三、 向量

考試內(nèi)容

向量的概念,向量的線性組合與線性表示,向量組的線性相關(guān)與線性無關(guān),向量組的極大線性無關(guān)組,等價向量組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系。

考試要求

1. 了解向量的概念,掌握向量的加法和數(shù)乘運算法則。

2. 理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)等概念,了解向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法。

3. 理解向量組的極大線性無關(guān)組和秩的概念,會求向量組的極大線性無關(guān)組及秩。

4. 了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系。

四、 線性方程組

考試內(nèi)容

線性方程組的克萊姆(Crammer)法則,非齊次線性方程組有解和無解的判定,齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的解與相應(yīng)齊次線性方程組的解之間的關(guān)系,非齊次線性方程組的通解。

考試要求

1. 了解克萊姆法則。

2. 掌握齊次線性方程組有非零解以及非齊次線性方程組有解無解的判定方法。

3. 掌握非齊次線性方程組的解與相應(yīng)齊次線性方程組的解之間的關(guān)系。

4. 會用初等行變換求齊次線性方程組的基礎(chǔ)解系和通解、非齊次線性方程組的通解。

五、 矩陣的特征值和特征向量

考試內(nèi)容

矩陣的特征值和特征向量的概念、性質(zhì),相似矩陣的概念及性質(zhì),矩陣可相似對角化的充分必要條件及相似對角矩陣,實對稱矩陣的特征值、特征向量及其相似對角矩陣。

考試要求

1. 理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì)。

2. 會求矩陣的特征值和特征向量。

3. 了解矩陣相似的概念和相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件

4. 會將可以對角化的矩陣化為相似對角矩陣。

概率論與數(shù)理統(tǒng)計

一、 隨機(jī)事件和概率

考試內(nèi)容

隨機(jī)事件與樣本空間,事件的關(guān)系與運算,概率的基本性質(zhì),古典型概率,條件概率,全概率公式和貝葉斯公式,事件的獨立性,獨立重復(fù)試驗。

考試要求

1. 了解樣本空間的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運算。

2. 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率,掌握概率的加法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式。

3. 理解事件獨立性的概念,掌握用事件獨立性進(jìn)行概率計算;理解獨立重復(fù)試驗的概念,掌握計算有關(guān)事件概率的方法。

二、 隨機(jī)變量及其分布

考試內(nèi)容

隨機(jī)變量,隨機(jī)變量分布函數(shù)的概念及其性質(zhì),離散型隨機(jī)變量的概率分布,連續(xù)型隨機(jī)變量的概率密度,常見隨機(jī)變量的分布,隨機(jī)變量函數(shù)的分布。

考試要求

1. 理解隨機(jī)變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機(jī)變量相聯(lián)系的事件的概率。

2. 理解離散型隨機(jī)變量及其概率分布的概念,掌握 0—1 分布、二項分布 、泊松(Poisson)分布 及其應(yīng)用。

3. 理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布 、正態(tài)分布 、指數(shù)分布 及其應(yīng)用。

4. 會求隨機(jī)變量簡單函數(shù)的分布。

三、 二維隨機(jī)變量及其分布

考試內(nèi)容

二維隨機(jī)變量及其分布,二維離散型隨機(jī)變量的概率分布和邊緣分布,二維連續(xù)型隨機(jī)變量的概率密度和邊緣概率密度,隨機(jī)變量的獨立性和不相關(guān)性,二維正態(tài)分布,兩個隨機(jī)變量簡單函數(shù)的分布。

考試要求

1. 理解二維隨機(jī)變量的概念,理解二維隨機(jī)變量的分布函數(shù)概念和性質(zhì),理解二維離散型隨機(jī)變量的概率分布和邊緣分布,理解二維連續(xù)型隨機(jī)變量的概率密度和邊緣密度。

2. 理解隨機(jī)變量的獨立性及不相關(guān)性的概念,了解隨機(jī)變量相互獨立的條件。

3.了解二維正態(tài)分布的概率密度,了解其中參數(shù)的概率意義。

4.會求與二維隨機(jī)變量相關(guān)事件的概率,會求兩個獨立隨機(jī)變量和的分布。

四、 隨機(jī)變量的數(shù)字特征

考試內(nèi)容

隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì),隨機(jī)變量函數(shù)的數(shù)學(xué)期望,矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)。

考試要求

1. 理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會運用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。

2. 會求隨機(jī)變量函數(shù)的數(shù)學(xué)期望。

五、 大數(shù)定律和中心極限定理

考試內(nèi)容

切比雪夫(Chebyshew)不等式,切比雪夫大數(shù)定律,伯努利(Bernoulli)大數(shù)定律,獨立同分布的中心極限定理。

考試要求

1. 了解切比雪夫不等式。

2. 了解切比雪夫大數(shù)定律和伯努利大數(shù)定律。

3. 能用獨立同分布的中心極限定理求隨機(jī)事件概率的近似值。

六、 數(shù)理統(tǒng)計的基本概念

考試內(nèi)容

總體,個體,簡單隨機(jī)樣本,統(tǒng)計量,樣本均值,樣本方差和樣本矩, 分布,t分布,F(xiàn) 分布,分位數(shù),正態(tài)總體的常用抽樣分布。

考試要求

1. 了解總體、簡單隨機(jī)樣本、統(tǒng)計量、樣本均值、樣本方差及樣本矩的概念。

2. 理解 分布,t分布,F(xiàn) 分布的概念及性質(zhì),了解分位數(shù)的概念并會查表計算。

3. 理解正態(tài)總體的常用抽樣分布,并會證明或求某些統(tǒng)計量的分布。

七、參數(shù)估計

考試內(nèi)容

參數(shù)的點估計,估計量的評選標(biāo)準(zhǔn),參數(shù)的區(qū)間估計。

考試要求

1.了解點估計的基本概念,掌握點估計的矩法估計與極大似然估計法的思想與方法。

2.了解評價估計量的優(yōu)劣性準(zhǔn)則:無偏性、有效性和一致性,并會判別估計量的無偏性和有效性。

3. 理解區(qū)間估計、置信區(qū)間和置信度的概念,了解精度的概念,掌握區(qū)間估計的一般方法。

八、 假設(shè)檢驗

考試內(nèi)容

理解假設(shè)檢驗的基本思想,假設(shè)檢驗的兩類錯誤,正態(tài)總體均值與方差的假設(shè)檢驗,兩個正態(tài)總體均值差的顯著性檢驗,方差的齊性檢驗。

考試要求

1.理解假設(shè)檢驗的基本思想與推理依據(jù),小概率原理,單側(cè)檢驗、雙側(cè)檢驗;了解假設(shè)檢驗的兩類錯誤;掌握假設(shè)檢驗的一般步驟。

2.掌握單個正態(tài)總體均值與方差的假設(shè)檢驗;掌握兩個正態(tài)總體均值差的顯著性檢驗,方差的齊性檢驗。

由于各方面情況的不斷調(diào)整與變化,易賢網(wǎng)提供的所有考試信息和咨詢回復(fù)僅供參考,敬請考生以權(quán)威部門公布的正式信息和咨詢?yōu)闇?zhǔn)!
關(guān)于我們 | 聯(lián)系我們 | 人才招聘 | 網(wǎng)站聲明 | 網(wǎng)站幫助 | 非正式的簡要咨詢 | 簡要咨詢須知 | 加入群交流 | 手機(jī)站點 | 投訴建議
工業(yè)和信息化部備案號:滇ICP備2023014141號-1 云南省教育廳備案號:云教ICP備0901021 滇公網(wǎng)安備53010202001879號 人力資源服務(wù)許可證:(云)人服證字(2023)第0102001523號
云南網(wǎng)警備案專用圖標(biāo)
聯(lián)系電話:0871-65317125(9:00—18:00) 獲取招聘考試信息及咨詢關(guān)注公眾號:hfpxwx
咨詢QQ:526150442(9:00—18:00)版權(quán)所有:易賢網(wǎng)
云南網(wǎng)警報警專用圖標(biāo)